5,972 research outputs found

    Normal state properties of an interacting large polaron gas

    Full text link
    A simple approach to the many-polaron problem for both weak and intermediate electron-phonon coupling and valid for densities much smaller than those typical of metals is presented. Within the model the total energy, the collective modes and the single-particle properties are studied and compared with the available theories. It is shown the occurrence of a charge density wave instability in the intermediate coupling regime.Comment: 26 pages, 12 figures. To appear on European Physical Journal

    Modelling clusters of galaxies by f(R)-gravity

    Full text link
    We consider the possibility that masses and gravitational potentials of galaxy cluster, estimated at X-ray wavelengths, could be explained without assuming huge amounts of dark matter, but in the context of f(R)f(R)-gravity. Specifically, we take into account the weak field limit of such theories and show that the corrected gravitational potential allows to estimate the total mass of a sample of 12 clusters of galaxies. Results show that such a gravitational potential provides a fair fit to the mass of visible matter (i.e. gas + stars) estimated by X-ray observations, without the need of additional dark matter while the size of the clusters, as already observed at different scale for galaxies, strictly depends on the interaction lengths of the corrections to the Newtonian potential.Comment: 18 pages, 34 figure

    Optical properties of an interacting large polaron gas

    Full text link
    The normal state conductivity of a system of interacting large polarons is calculated within the Random Phase approximation and some numerical results are presented. The behaviour of the optical absorption as a function of the charge carrier density and of the temperature is analyzed for different values of the electron-phonon coupling constant. It is shown that the conductivity exihibits features similar to thos observed in the infrared spectra of the cuprates.Comment: 13 pages, 1 table, 3 figures (to be published ob Eur. Jour. Phys. B

    Ballistic transport in one-dimensional loops with Rashba and Dresselhaus spin-orbit coupling

    Get PDF
    We discuss the combined effect of Rashba and Dresselhaus spin-orbit interactions in polygonal loops formed by quantum wires, when the electron are injected in a node and collected at the opposite one. The conditions that allow perfect localization are found. Furthermore, we investigate the suppression of the Al'tshuler--Aronov--Spivak oscillations that appear, in presence of a magnetic flux, when the electrons are injected and collected at the same node. Finally, we point out that a recent realization of a ballistic spin interferometer can be used to obtain a reliable estimate of the magnitude ratio of the two spin-orbit interactions.\bigskipComment: 6 figure

    On the interface polaron formation in organic field-effect transistors

    Full text link
    A model describing the low density carrier state in an organic single crystal FET with high-κ\kappa gate dielectrics is studied. The interplay between charge carrier coupling with inter-molecular vibrations in the bulk of the organic material and the long-range interaction induced at the interface with a polar dielectric is investigated. This interplay is responsible for the stabilization of a polaronic state with an internal structure extending on few lattice sites, at much lower coupling strengths than expected from the polar interaction alone. This effect could give rise to polaron self-trapping in high-κ\kappa organic FET's without invoking unphysically large values of the carrier interface interaction.Comment: 9 pages, 9 figure

    Elucidation of the disulfide folding pathway of hirudin by a topology-based approach

    Get PDF
    A theoretical model for the folding of proteins containing disulfide bonds is introduced. The model exploits the knowledge of the native state to favour the progressive establishment of native interactions. At variance with traditional approaches based on native topology, not all native bonds are treated in the same way; in particular, a suitable energy term is introduced to account for the special strength of disulfide bonds (irrespective of whether they are native or not) as well as their ability to undergo intra-molecular reshuffling. The model thus possesses the minimal ingredients necessary to investigated the much debated issue of whether the re-folding process occurs through partially structured intermediates with native or non-native disulfide bonds. This strategy is applied to a context of particular interest, the re-folding process of Hirudin, a thrombin-specific protease inhibitor, for which conflicting folding pathways have been proposed. We show that the only two parameters in the model (temperature and disulfide strength) can be tuned to reproduce well a set of experimental transitions between species with different number of formed disulfide. This model is then used to provide a characterisation of the folding process and a detailed description of the species involved in the rate-limiting step of Hirudin refolding.Comment: 14 pages, 9 figure

    Spectral properties and infrared absorption in manganites

    Full text link
    Within a recently proposed variational approach it has been shown that, in La1−xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, near the metal-insulator transition, the combined effect of the magnetic and electron-phonon interactions pushes the system toward a regime of two coexisting phases: a low electron density one made by itinerant large polarons forming ferromagnetic domains and a high electron density one made by localized small polarons giving rise to paramagnetic or antiferromagnetic domains depending on temperature. Employing the above-mentioned variational scheme, in this paper spectral and optical properties of manganites are derived for x=0.3x=0.3 at different temperatures. It is found that the phase separation regime induces a robust pseudogap in the excitation spectrum of the system. Then the conductivity spectra are characterized by a transfer of spectral weight from high to low energies, as the temperature TT decreases. In the metallic ferromagnetic phase, at low TT two types of infrared absorption come out: a Drude term and a broad absorption band due respectively to the coherent and incoherent motion of large polarons. The obtained results turn out in good agreement with experiments.Comment: 9 figure

    Non-local composite spin-lattice polarons in high temperature superconductors

    Full text link
    The non-local nature of the polaron formation in t-t'-t"-J model is studied in large lattices up to 64 sites by developing a new numerical method. We show that the effect of longer-range hoppings t' and t" is a large anisotropy of the electron-phonon interaction (EPI) leading to a completely different influence of EPI on the nodal and antinodal points in agreement with the experiments. Furthermore, nonlocal EPI preserves polaron's quantum motion, which destroys the antiferromagnetic order effectively, even at strong coupling regime, although the quasi-particle weight in angle-resolved-photoemission spectroscopy is strongly suppressed.Comment: 5 pages, 4 figure

    Ground state features of the Frohlich model

    Full text link
    Following the ideas behind the Feynman approach, a variational wave function is proposed for the Fr\"ohlich model. It is shown that it provides, for any value of the electron-phonon coupling constant, an estimate of the polaron ground state energy better than the Feynman method based on path integrals. The mean number of phonons, the average electronic kinetic and interaction energies, the ground state spectral weight and the electron-lattice correlation function are calculated and successfully compared with the best available results.Comment: 6 figure
    • …
    corecore